
139

■ ■ ■

C H A P T E R 7

Take Me to Your Leader

Placing a player character in a convincing world is only part of creating a game. To make a
game fun, you need to present the player with a number of challenges. These may come in the
form of traps and obstacles, but to really entertain your players you need to have them interact
with nonplayer characters (NPCs)—characters that appear to act with a degree of intelligence
or awareness in the game. The process of creating these NPCs is called artificial intelligence
(AI). In this chapter, we will explore some simple techniques that you can use to give your game
characters a life of their own.

Creating Artificial Intelligence for Games
You may have looked in the Pygame documentation for a pygame.ai module. There isn’t one,
because each game can have vastly different requirements when it comes to creating NPCs.
The code for an ape that throws barrels at plumbers wouldn’t require much work—all the ape
needs to determine is whether it should throw the barrel to the left or right, something you
could probably simulate in a single line of Python code! Creating a convincing enemy combat-
ant in a futuristic first-person shooter may take a little more effort. The AI player would have to
plan routes from one part of the map to another, and at the same time aim weapons and dodge
enemy fire. It may also have to make decisions based on the ammo supply and armor inven-
tory. The better it does all of this, the better AI player it will be and the greater the challenge for
the player.

Although most AI in games is used to create convincing opponents to play against, it is
becoming increasingly popular to use AI techniques for altogether more peaceful purposes.
NPCs need not always be enemies that must be dispatched on sight; they may also be charac-
ters placed in the game world to add depth to the gameplay. Some NPCs may even be friends
of the player that should be protected from harm because they actively assist in the quest.
Other games, such as the phenomenally successful The Sims, don’t require a player character
at all, and are entirely populated with NPCs.

AI is also useful for making the game world more convincing by adding background char-
acters that aren’t directly involved in the gameplay (the game equivalent of movie extras). We
can apply a few AI techniques to make birds flock together, or crowds of people flee from an
out-of-control car in a racing game. It’s this kind of attention to detail that truly connects a
player to the game world. The trick is to convince the player that the game world would exist
even if they weren’t currently playing.

AI has a reputation for being difficult, which it doesn’t really deserve. Much of the code
you create for AI can be reused in various combinations to create a large variety of different

8725.book Page 139 Sunday, September 23, 2007 8:57 PM

140 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

types of NPCs. In fact, most games will use the same code for every character in a game and you
have to tweak just a few values to modify behavior.

This chapter won’t cover a great deal of the theory of artificial intelligence (which could
easily consume an entire book). Rather, it will give you a number of techniques that you can
apply to many situations in games.

What Is Intelligence?
Intelligence is a difficult thing to define, even for AI programmers. I’m confident that I am
intelligent and self-aware, but I can only assume that others are intelligent because they are
like me in many ways. Other people talk, move, check their e-mail, and take out their trash like
I do—so I assume they are intelligent. Similarly, in a game if a character behaves in a way that
an intelligent thing would, then the player will assume it is intelligent. The programmer may
know that the actions of a character are simply a result of a few pages of computer code, but the
player will be oblivious to that fact. As far as the player is concerned, if it walks like a zombie,
moans like a zombie, and eats people like a zombie, then it’s a zombie!

So intelligence in a game is an illusion (it may be in real life as well). The code to create this
illusion doesn’t differ a great deal from the code in the previous chapters. You will use the same
basic tools of Python strings, lists, dictionaries, and so forth to build classes that are effectively
the brains of your NPCs. In fact, Python is probably one of the best languages for writing AI
because of its large range of built-in objects.

Exploring AI
Artificial intelligence isn’t essential to creating an entertaining game. I used to love to play clas-
sic platform games where the hero has to leap from platform to platform and brazenly jump on
the heads of monsters.

Although the monsters in these games are NPCs, their actions are a little rudimentary to be
considered AI. Let’s look inside the head of a typical platform game monster (Listing 7-1). This
listing is pseudocode, which is code that’s used to demonstrate a technique but that doesn’t
actually run.

Listing 7-1. Pseudocode for a platform monster

self.move_forward()
if self.hit_wall():
 self.change_direction()

The particular monster in Listing 7-1 doesn’t have any awareness of its surroundings other
than being able to detect if it has hit a wall, and it certainly won’t react in any way to the player
character that is about to land on its head. Generally speaking, a requirement for AI is that the
NPC must have awareness of other entities in the games, especially the player character. Let’s
consider another type of game monster: a fireball-throwing imp from the underworld. The imp
has a simple mission in life: to find the player and hurl a fireball in his direction. Listing 7-2 is
the pseudocode for the imp’s brain.

8725.book Page 140 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 141

Listing 7-2. Pseudocode for Imp AI

if self.state == "exploring":
 self.random_heading()
 if self.can_see(player):
 self.state = "seeking"

elif self.state == "seeking":
 self.head_towards("player")
 if self.in_range_of(player):
 self.fire_at(player)
 if not self.can_see(player):
 self.state = "exploring"

The imp can be in one of two states: exploring or seeking. The current state of the imp is
stored in the value of self.state, and indicates which block of code currently controls the
imp’s actions. When the imp is exploring (i.e., self.state == "exploring"), it will walk aim-
lessly around the map by picking a random heading. But if it sees the player, it will switch to the
second state of "seeking". An imp that is in seeking mode will head toward the player and fire
as soon as it is in range. It will keep doing this as long as the player can be seen, but if the cow-
ardly player retreats, the imp will switch back to the exploring state.

Our imp is certainly no deep thinker, but it does have an awareness of its surroundings
(i.e., where the player is) and takes actions accordingly. Even with two states, the imp will be
intelligent enough to be a stock enemy in a first-person shooter. If we were to add a few more
states and define the conditions to switch between them, we could create a more formidable
enemy. This is a common technique in game AI and is known as a state machine.

■Note This imp is not the smartest of underworld denizens. If the player can no longer be seen, the imp
will stop seeking, even if the player has just hidden behind a tree! Fortunately we can build on the state
machine to create a smarter class of imp.

Implementing State Machines
The two states for the imp’s brain form a very simple state machine. A state generally defines
two things:

• What the NPC is doing at that moment

• At what point it should switch to another state

The condition to get from the exploring state to the seeking state is self.can_see(player)—in other
words, “Can I (the imp) see the player?” The opposite condition (not self.can_see(player)) is
used to get back from seeking to exploring. Figure 7-1 is a diagram of the imp’s state machine,
which is effectively its brain. The arrows define the links between the states and the conditions that

8725.book Page 141 Sunday, September 23, 2007 8:57 PM

142 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

must be satisfied to switch states. Links in a state machine are always one-way, but there may be
another link that returns to the original state. There may also be several intermediate states before
returning to the original state, depending on the complexity of the NPC’s behavior.

Figure 7-1. Imp state machine

In addition to the current behavior and conditions, states may also contain entry actions
and exit actions. An entry action is something that is done prior to entering a new state, and is
typically used to perform one-time actions needed by the state to run. For the seeking state in
the imp’s state machine, an entry action might calculate a heading toward the player and play
a noise to indicate that it has seen the player—or anything else required to ready the imp for
battle. Exit actions, the opposite of entry actions, are performed when leaving a state.

Let’s create a slightly more interesting state machine so we can put this into practice. We
are going to create a simulation of an ant’s nest. Insects are often used when experimenting
with AI because they have quite simple behaviors that are easy to model. In our simulation uni-
verse, we are going to have three entities: leaves, spiders, and the ants themselves. The leaves
will grow in random spots on the screen and will be harvested by the ants and returned to the
nest. Spiders wander over the screen, and are tolerated by the ants as long as they don’t come
near the nest. If a spider enters the nest, it will be chased and bitten until it either dies or man-
ages to get far enough away.

■Note Even though we are using an insect theme for this simulation, the AI code we will be writing is appli-
cable to many scenarios. If we were to replace the ants, spiders, and leaves with giant “mech” robots, tanks,
and fuel drops, then the simulation would still make sense.

8725.book Page 142 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 143

Game Entities
Although we have three different types of entities, it is a good idea to come up with a base class for
a game entity that contains common properties and actions. That way, we won’t need to dupli-
cate code for each of the entities, and we can easily add other entities without much extra work.

An entity will need to store its name ("ant", "leaf", or "spider"), as well as its current loca-
tion, destination, speed, and the image used to represent it on screen. You may find it odd that
the "leaf" entity will have a destination and speed. We aren’t going to have magic walking
leaves; we will simply set their speed to zero so that they don’t move. That way, we can still treat
leaves in the same way as the other entities. In addition to this information, we need to define
a few common functions for game entities. We will need a function to render entities to the
screen and another to process the entity (i.e., update its position on screen). Listing 7-3 shows
the code to create a GameEntity class, which will be used as the base for each of the entities.

Listing 7-3. The Base Class for a Game Entity

class GameEntity(object):

 def __init__(self, world, name, image):

 self.world = world
 self.name = name
 self.image = image
 self.location = Vector2(0, 0)
 self.destination = Vector2(0, 0)
 self.speed = 0.

 self.brain = StateMachine()

 self.id = 0

 def render(self, surface):

 x, y = self.location
 w, h = self.image.get_size()
 surface.blit(self.image, (x-w/2, y-h/2))

 def process(self, time_passed):

 self.brain.think()

 if self.speed > 0 and self.location != self.destination:

8725.book Page 143 Sunday, September 23, 2007 8:57 PM

144 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

 vec_to_destination = self.destination - self.location
 distance_to_destination = vec_to_destination.get_length()
 heading = vec_to_destination.get_normalized()
 travel_distance = min(distance_to_destination, time_passed * self.speed)
 self.location += travel_distance * heading

The GameEntity class also keeps a reference to a world, which is an object we will use to
store the positions of all the entities. This World object is important because it is how the entity
knows about other entities in the simulation. Entities also require an ID to identify it in the
world and a StateMachine object for its brain (which we will define later).

The render function for GameEntity simply blits the entities’ image to the screen, but first
adjusts the coordinates so that the current location is under the center of the image rather than
the top left. We do this because the entities will be treated as circles with a point and a radius,
which will simplify the math when we need to detect interactions with other entities.

The process function of GameEntity objects first calls self.brain.think, which will run the
state machine to control the entity (typically by changing its destination). Only the ant will use
a state machine in this simulation, but we could add AI to any entity. If we haven’t built a state
machine for the entity, this call will simply return without doing anything. The rest of the
process function moves the entity toward its destination, if it is not there already.

Building Worlds
Now that we have created a GameEntity class, we need to create a world for the entities to live in.
There is not much to the world for this simulation—just a nest, represented by a circle in the
center of the screen, and a number of game entities of varying types. The World class (Listing 7-4)
draws the nest and manages its entities.

Listing 7-4. World Class

class World(object):

 def __init__(self):

 self.entities = {} # Store all the entities
 self.entity_id = 0 # Last entity id assigned
 # Draw the nest (a circle) on the background
 self.background = pygame.surface.Surface(SCREEN_SIZE).convert()
 self.background.fill((255, 255, 255))
 pygame.draw.circle(self.background, (200, 255, 200), NEST_POSITION, ➥

int(NEST_SIZE))

 def add_entity(self, entity):

 # Stores the entity then advances the current id
 self.entities[self.entity_id] = entity
 entity.id = self.entity_id
 self.entity_id += 1

8725.book Page 144 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 145

 def remove_entity(self, entity):

 del self.entities[entity.id]

 def get(self, entity_id):

 # Find the entity, given its id (or None if it is not found)
 if entity_id in self.entities:
 return self.entities[entity_id]
 else:
 return None

 def process(self, time_passed):

 # Process every entity in the world
 time_passed_seconds = time_passed / 1000.0
 for entity in self.entities.itervalues():
 entity.process(time_passed_seconds)

 def render(self, surface):

 # Draw the background and all the entities
 surface.blit(self.background, (0, 0))
 for entity in self.entities.values():
 entity.render(surface)

 def get_close_entity(self, name, location, range=100.):

 # Find an entity within range of a location
 location = Vector2(*location)

 for entity in self.entities.values():
 if entity.name == name:
 distance = location.get_distance_to(entity.location)
 if distance < range:
 return entity
 return None

Since we have a number of GameEntity objects, it would be perfectly natural to use a
Python list object to store them. Although this could work, we would run into problems; when
an entity needs to be removed from the world (i.e., it died), we would have to search through
the list to find its index, and then call del to delete it. Searching through lists can be slow, and
would only get slower as the list grows. A better way to store entities is with a Python dictionary,
which can efficiently find an entity even if there are many of them.

To store entities in a dictionary, we need a value to use as a key, which could be a string,
a number, or another value. Thinking of a name for each ant would be difficult, so we will sim-
ply number the ants sequentially: the first ant is #0, the second is #1, and so on. This number is

8725.book Page 145 Sunday, September 23, 2007 8:57 PM

146 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

the entity’s id, and is stored in every GameEntity object so that we can always locate the object
in the dictionary (see Figure 7-2).

Figure 7-2. The entities dictionary

■Note A dictionary that maps incremental numbers to its values is similar to a list, but the keys won’t shuf-
fle down if a value is deleted. So Ant #5 will still be Ant #5, even if Ant #4 is removed.

Most of the functions in the World class are responsible for managing the entities in some
way. There is an add_entity function to add an entity to the world, a remove_entity function to
remove it from the world, and a get function that looks up the entity given its id. If get can’t
find the id in the entities dictionary, it will return None. This is useful because it will tell us that
an entity has been removed (id values are never reused). Consider the situation where a group
of ants are in hot pursuit of a spider that has invaded the nest. Each ant object stores the id of
the spider it is chasing and will look it up (with get) to retrieve the spider’s location. At some
point, though, the unfortunate spider will be dispatched and removed from the world. When
this happens, any call to the get function with the spider’s id will return None, so the ants will
know they can stop chasing and return to other duties.

Also in the World class we have a process and a render function. The process function
of the World object calls the process function of each entity to give it a chance to update its
position. The render function is similar; in addition to drawing the background, it calls the
corresponding render function of each entity to draw the appropriate graphic at its location.

8725.book Page 146 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 147

Finally in the World class there is a function called get_close_entity, which finds an entity
that is within a certain distance of a location in the world. This will be used in several places in
the simulation.

■Note When implementing an NPC, you should generally limit the information available to it, because like
real people NPCs may not necessarily be aware of everything that is going on in the world. We simulate this
with the ants, by only letting them see objects within a limited distance.

Ant Entity Class
Before we model the brain for the ants, let’s look at the Ant class (Listing 7-5). It derives from
GameEntity, so that it will have all the capabilities of a GameEntity, together with any additional
functions we add to it.

Listing 7-5. The Ant Entity Class

class Ant(GameEntity):

 def __init__(self, world, image):

 # Call the base class constructor
 GameEntity.__init__(self, world, "ant", image)

 # Create instances of each of the states
 exploring_state = AntStateExploring(self)
 seeking_state = AntStateSeeking(self)
 delivering_state = AntStateDelivering(self)
 hunting_state = AntStateHunting(self)

 # Add the states to the state machine (self.brain)
 self.brain.add_state(exploring_state)
 self.brain.add_state(seeking_state)
 self.brain.add_state(delivering_state)
 self.brain.add_state(hunting_state)

 self.carry_image = None

 def carry(self, image):

 self.carry_image = image

 def drop(self, surface):

8725.book Page 147 Sunday, September 23, 2007 8:57 PM

148 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

 # Blit the 'carry' image to the background and reset it
 if self.carry_image:
 x, y = self.location
 w, h = self.carry_image.get_size()
 surface.blit(self.carry_image, (x-w, y-h/2))
 self.carry_image = None

 def render(self, surface):

 # Call the render function of the base class
 GameEntity.render(self, surface)

 # Extra code to render the 'carry' image
 if self.carry_image:
 x, y = self.location
 w, h = self.carry_image.get_size()
 surface.blit(self.carry_image, (x-w, y-h/2))

The constructor for our Ant class (__init__) first calls the constructor for the base class
with the line GameEntity.__init__(self, world, "ant", image). We have to call it this way
because if we were to call self.__init__ Python would call the constructor in Ant—and end up
in an infinite loop! The remaining code in the ant’s constructor creates the state machine (cov-
ered in the next section) and also sets a member variable called carry_image to None. This
variable is set by the carry function and is used to store the image of an object that the ant is
carrying; it could be a leaf or a dead spider. If the drop function is called, it will set carry_image
back to None, and it will no longer be drawn.

Because of the ability to carry other images, ants have an extra requirement when it comes
to rendering the sprite. We want to draw the image the ant is carrying in addition to its own
image, so ants have a specialized version of render, which calls the render function in the base
class and then renders carry_image, if it is not set to None.

Building the Brains
Each ant is going to have four states in its state machine, which should be enough to simulate
ant-like behavior. The first step in defining the state machine is to work out what each state
should do, which are the actions for the state (see Table 7-1).

Table 7-1. Actions for the Ant States

State Actions

Exploring Walk toward a random point in the world.

Seeking Head toward a leaf.

Delivering Deliver something to the nest.

Hunting Chase a spider.

8725.book Page 148 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 149

We also need to define the links that connect states together. These take the form of a con-
dition and the name of the state to switch to if the condition is met. The exploring state, for
example, has two such links (see Table 7-2).

Table 7-2. Links from Exploring State

Once we have defined the links between the states, we have a state machine that can be used
as the brain for an entity. Figure 7-3 shows the complete state machine that we will be building
for the ant. Drawing a state machine out on paper like this is a great way of visualizing how it all
fits together, and will help you when you need to turn it into code.

Figure 7-3. Ant state machine

Let’s put this into practice and create the code for the state machine. We will begin by
defining a base class for an individual state (Listing 7-6). Later we will create another class for
the state machine as a whole that will manage the states it contains.

The base State class doesn’t actually do anything other than store the name of the state
in the constructor. The remaining functions in State do nothing—the pass keyword simply
tells Python that you intentionally left the function blank. We need these empty functions
because not all of the states we will be building will implement all of the functions in the base
class. The exploring state, for example, has no exit actions. When we come to implement the
AntStateExploring class, we can omit the exit_actions function because it will safely fall
back to the do-nothing version of the function in the base class (State).

Condition Destination State

Seen a leaf? Seeking

Spider attacking base? Hunting

8725.book Page 149 Sunday, September 23, 2007 8:57 PM

150 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

Listing 7-6. Base Class for a State

class State(object):

 def __init__(self, name):
 self.name = name

 def do_actions(self):
 pass

 def check_conditions(self):
 pass

 def entry_actions(self):
 pass

 def exit_actions(self):
 pass

Before we build the states, we need to build a class that will manage them. The StateMachine
class (Listing 7-7) stores an instance of each of the states in a dictionary and manages the currently
active state. The think function runs once per frame, and calls the do_actions on the active state—
to do whatever the state was designed to do; the exploring state will select random places to walk to,
the seeking state will move toward the leaf, and so forth. The think function also calls the state’s
check_conditions function to check all of the link conditions. If check_conditions returns a string,
a new active state will be selected and any exit and entry actions will run.

Listing 7-7. The State Machine Class

class StateMachine(object):

 def __init__(self):

 self.states = {} # Stores the states
 self.active_state = None # The currently active state

 def add_state(self, state):

 # Add a state to the internal dictionary
 self.states[state.name] = state

 def think(self):

8725.book Page 150 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 151

 # Only continue if there is an active state
 if self.active_state is None:
 return

 # Perform the actions of the active state, and check conditions
 self.active_state.do_actions()

 new_state_name = self.active_state.check_conditions()
 if new_state_name is not None:
 self.set_state(new_state_name)

 def set_state(self, new_state_name):

 # Change states and perform any exit / entry actions
 if self.active_state is not None:
 self.active_state.exit_actions()

 self.active_state = self.states[new_state_name]
 self.active_state.entry_actions()

Now that we have a functioning state machine class, we can start implementing each of
the individual states by deriving from the State class and implementing some of its functions.
The first state we will implement is the exploring state, which we will call AntStateExploring
(see Listing 7-8). The entry actions for this state give the ant a random speed and set its desti-
nation to a random point on the screen. The main actions, in the do_actions function, select
another random destination if the expression randint(1, 20) == 1 is true, which will happen
in about 1 in every 20 calls, since randint (in the random module) selects a random number that
is greater than or equal to the first parameter, and less than or equal to the second. This gives
us the antlike random searching behavior we are looking for.

The two outgoing links for the exploring state are implemented in the check_conditions
function. The first condition looks for a leaf entity that is within 100 pixels from an ant’s loca-
tion (because that’s how far our ants can see). If there is a nearby leaf, then check_conditions
records its id and returns the string seeking, which will instruct the state machine to switch
to the seeking state. The remaining condition will switch to hunting if there are any spiders
inside the nest and within 100 pixels of the ant’s location.

■Caution Random numbers are a good way to make your game more fun, because predictable games can
get dull after a while. But be careful with random numbers—if something goes wrong, it may be difficult to
reproduce the problem!

8725.book Page 151 Sunday, September 23, 2007 8:57 PM

152 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

Listing 7-8. The Exploring State for Ants (AntStateExploring)

class AntStateExploring(State):

 def __init__(self, ant):

 # Call the base class constructor to initialize the State
 State.__init__(self, "exploring")
 # Set the ant that this State will manipulate
 self.ant = ant

 def random_destination(self):

 # Select a point in the screen
 w, h = SCREEN_SIZE
 self.ant.destination = Vector2(randint(0, w), randint(0, h))

 def do_actions(self):

 # Change direction, 1 in 20 calls
 if randint(1, 20) == 1:
 self.random_destination()

 def check_conditions(self):

 # If there is a nearby leaf, switch to seeking state
 leaf = self.ant.world.get_close_entity("leaf", self.ant.location)
 if leaf is not None:
 self.ant.leaf_id = leaf.id
 return "seeking"
 # If there is a nearby spider, switch to hunting state
 spider = self.ant.world.get_close_entity("spider", NEST_POSITION, NEST_SIZE)
 if spider is not None:
 if self.ant.location.get_distance_to(spider.location) < 100.:
 self.ant.spider_id = spider.id
 return "hunting"

 return None

 def entry_actions(self):

 # Start with random speed and heading
 self.ant.speed = 120. + randint(-30, 30)
 self.random_destination()

8725.book Page 152 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 153

As you can see from Listing 7-8, the code for an individual state need not be very complex
because the states work together to produce something that is more than the sum of its parts.
The other states are similar to AntStateExploring in that they pick a destination based on the
goal of that state and switch to another state if they have accomplished that goal, or it no longer
becomes relevant.

There is not a great deal left to do in the main loop of the game. Once the World object has
been created, we simply call process and render once per frame to update and draw everything
in the simulation. Also in the main loop are a few lines of code to create leaf entities at random
positions in the world and occasionally create spider entities that wander in from the left side
of the screen.

Listing 7-9 shows the entire simulation. When you run it, you will see something like
Figure 7-4; the ants roam around the screen collecting leaves and killing spiders, which they
will pile up in the nest. You can see that the ants satisfy the criteria of being AIs because
they are aware of their environment—in a limited sense—and take actions accordingly.

Although there is no player character in this simulation, this is the closest we have come to
a true game. We have a world, an entity framework, and artificial intelligence. It could be
turned into a game with the addition of a player character. You could define a completely new
entity for the player, perhaps a praying mantis that has to eat the ants, or add keyboard control
to the spider entity and have it collect eggs from the nest. Alternatively, the simulation is a great
starting point for a strategy game where groups of ants can be sent to collect leaves or raid
neighboring nests. Game developers should be as imaginative as possible!

Figure 7-4. The ant simulation

8725.book Page 153 Sunday, September 23, 2007 8:57 PM

154 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

Listing 7-9. The Complete AI Simulation (antstatemachine.py)

Some constants you can modify
SCREEN_SIZE = (640, 480)
NEST_POSITION = (320, 240)
ANT_COUNT = 20
NEST_SIZE = 100.

import pygame
from pygame.locals import *

from random import randint, choice
from gameobjects.vector2 import Vector2

class State(object):

 def __init__(self, name):
 self.name = name

 def do_actions(self):
 pass

 def check_conditions(self):
 pass

 def entry_actions(self):
 pass

 def exit_actions(self):
 pass

class StateMachine(object):

 def __init__(self):

 self.states = {}
 self.active_state = None

 def add_state(self, state):

 self.states[state.name] = state

 def think(self):

 if self.active_state is None:
 return

8725.book Page 154 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 155

 self.active_state.do_actions()

 new_state_name = self.active_state.check_conditions()
 if new_state_name is not None:
 self.set_state(new_state_name)

 def set_state(self, new_state_name):

 if self.active_state is not None:
 self.active_state.exit_actions()

 self.active_state = self.states[new_state_name]
 self.active_state.entry_actions()

class World(object):

 def __init__(self):

 self.entities = {}
 self.entity_id = 0
 self.background = pygame.surface.Surface(SCREEN_SIZE).convert()
 self.background.fill((255, 255, 255))
 pygame.draw.circle(self.background, (200, 255, 200), NEST_POSITION,➥

int(NEST_SIZE))

 def add_entity(self, entity):

 self.entities[self.entity_id] = entity
 entity.id = self.entity_id
 self.entity_id += 1

 def remove_entity(self, entity):

 del self.entities[entity.id]

 def get(self, entity_id):

 if entity_id in self.entities:
 return self.entities[entity_id]
 else:
 return None

 def process(self, time_passed):

8725.book Page 155 Sunday, September 23, 2007 8:57 PM

156 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

 time_passed_seconds = time_passed / 1000.0
 for entity in self.entities.values():
 entity.process(time_passed_seconds)

 def render(self, surface):

 surface.blit(self.background, (0, 0))
 for entity in self.entities.itervalues():
 entity.render(surface)

 def get_close_entity(self, name, location, range=100.):

 location = Vector2(*location)

 for entity in self.entities.itervalues():
 if entity.name == name:
 distance = location.get_distance_to(entity.location)
 if distance < range:
 return entity
 return None

class GameEntity(object):

 def __init__(self, world, name, image):

 self.world = world
 self.name = name
 self.image = image
 self.location = Vector2(0, 0)
 self.destination = Vector2(0, 0)
 self.speed = 0.

 self.brain = StateMachine()

 self.id = 0

 def render(self, surface):

 x, y = self.location
 w, h = self.image.get_size()
 surface.blit(self.image, (x-w/2, y-h/2))

 def process(self, time_passed):

 self.brain.think()

8725.book Page 156 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 157

 if self.speed > 0. and self.location != self.destination:

 vec_to_destination = self.destination - self.location
 distance_to_destination = vec_to_destination.get_length()
 heading = vec_to_destination.get_normalized()
 travel_distance = min(distance_to_destination, time_passed * self.speed)
 self.location += travel_distance * heading

class Leaf(GameEntity):

 def __init__(self, world, image):
 GameEntity.__init__(self, world, "leaf", image)

class Spider(GameEntity):

 def __init__(self, world, image):
 GameEntity.__init__(self, world, "spider", image)

 # Make a 'dead' spider image by turning it upside down
 self.dead_image = pygame.transform.flip(image, 0, 1)

 self.health = 25
 self.speed = 50. + randint(-20, 20)

 def bitten(self):

 # Spider as been bitten
 self.health -= 1
 if self.health <= 0:
 self.speed = 0.
 self.image = self.dead_image
 self.speed = 140.

 def render(self, surface):

 GameEntity.render(self, surface)

 # Draw a health bar
 x, y = self.location
 w, h = self.image.get_size()
 bar_x = x - 12
 bar_y = y + h/2
 surface.fill((255, 0, 0), (bar_x, bar_y, 25, 4))
 surface.fill((0, 255, 0), (bar_x, bar_y, self.health, 4))

8725.book Page 157 Sunday, September 23, 2007 8:57 PM

158 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

 def process(self, time_passed):

 x, y = self.location
 if x > SCREEN_SIZE[0] + 2:
 self.world.remove_entity(self)
 return

 GameEntity.process(self, time_passed)

class Ant(GameEntity):

 def __init__(self, world, image):

 GameEntity.__init__(self, world, "ant", image)

 # State classes are defined below
 exploring_state = AntStateExploring(self)
 seeking_state = AntStateSeeking(self)
 delivering_state = AntStateDelivering(self)
 hunting_state = AntStateHunting(self)

 self.brain.add_state(exploring_state)
 self.brain.add_state(seeking_state)
 self.brain.add_state(delivering_state)
 self.brain.add_state(hunting_state)

 self.carry_image = None

 def carry(self, image):

 self.carry_image = image

 def drop(self, surface):

 if self.carry_image:
 x, y = self.location
 w, h = self.carry_image.get_size()
 surface.blit(self.carry_image, (x-w, y-h/2))
 self.carry_image = None

 def render(self, surface):

 GameEntity.render(self, surface)

8725.book Page 158 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 159

 if self.carry_image:
 x, y = self.location
 w, h = self.carry_image.get_size()
 surface.blit(self.carry_image, (x-w, y-h/2))

class AntStateExploring(State):

 def __init__(self, ant):

 State.__init__(self, "exploring")
 self.ant = ant

 def random_destination(self):

 w, h = SCREEN_SIZE
 self.ant.destination = Vector2(randint(0, w), randint(0, h))

 def do_actions(self):

 if randint(1, 20) == 1:
 self.random_destination()

 def check_conditions(self):

 # If ant sees a leaf, go to the seeking state
 leaf = self.ant.world.get_close_entity("leaf", self.ant.location)
 if leaf is not None:
 self.ant.leaf_id = leaf.id
 return "seeking"

 # If the ant sees a spider attacking the base, go to hunting state
 spider = self.ant.world.get_close_entity("spider", NEST_POSITION, NEST_SIZE)
 if spider is not None:
 if self.ant.location.get_distance_to(spider.location) < 100.:
 self.ant.spider_id = spider.id
 return "hunting"

 return None

 def entry_actions(self):

 self.ant.speed = 120. + randint(-30, 30)
 self.random_destination()

8725.book Page 159 Sunday, September 23, 2007 8:57 PM

160 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

class AntStateSeeking(State):

 def __init__(self, ant):

 State.__init__(self, "seeking")
 self.ant = ant
 self.leaf_id = None

 def check_conditions(self):

 # If the leaf is gone, then go back to exploring
 leaf = self.ant.world.get(self.ant.leaf_id)
 if leaf is None:
 return "exploring"

 # If we are next to the leaf, pick it up and deliver it
 if self.ant.location.get_distance_to(leaf.location) < 5.0:

 self.ant.carry(leaf.image)
 self.ant.world.remove_entity(leaf)
 return "delivering"

 return None

 def entry_actions(self):

 # Set the destination to the location of the leaf
 leaf = self.ant.world.get(self.ant.leaf_id)
 if leaf is not None:
 self.ant.destination = leaf.location
 self.ant.speed = 160. + randint(-20, 20)

class AntStateDelivering(State):

 def __init__(self, ant):

 State.__init__(self, "delivering")
 self.ant = ant

 def check_conditions(self):

8725.book Page 160 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 161

 # If inside the nest, randomly drop the object
 if Vector2(*NEST_POSITION).get_distance_to(self.ant.location) < NEST_SIZE:
 if (randint(1, 10) == 1):
 self.ant.drop(self.ant.world.background)
 return "exploring"

 return None

 def entry_actions(self):

 # Move to a random point in the nest
 self.ant.speed = 60.
 random_offset = Vector2(randint(-20, 20), randint(-20, 20))
 self.ant.destination = Vector2(*NEST_POSITION) + random_offset

class AntStateHunting(State):

 def __init__(self, ant):

 State.__init__(self, "hunting")
 self.ant = ant
 self.got_kill = False

 def do_actions(self):

 spider = self.ant.world.get(self.ant.spider_id)

 if spider is None:
 return

 self.ant.destination = spider.location

 if self.ant.location.get_distance_to(spider.location) < 15.:

 # Give the spider a fighting chance to avoid being killed!
 if randint(1, 5) == 1:
 spider.bitten()

 # If the spider is dead, move it back to the nest
 if spider.health <= 0:
 self.ant.carry(spider.image)
 self.ant.world.remove_entity(spider)
 self.got_kill = True

8725.book Page 161 Sunday, September 23, 2007 8:57 PM

162 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

 def check_conditions(self):

 if self.got_kill:
 return "delivering"

 spider = self.ant.world.get(self.ant.spider_id)

 # If the spider has been killed then return to exploring state
 if spider is None:
 return "exploring"

 # If the spider gets far enough away, return to exploring state
 if spider.location.get_distance_to(NEST_POSITION) > NEST_SIZE * 3:
 return "exploring"

 return None

 def entry_actions(self):

 self.speed = 160. + randint(0, 50)

 def exit_actions(self):

 self.got_kill = False

def run():

 pygame.init()
 screen = pygame.display.set_mode(SCREEN_SIZE, 0, 32)

 world = World()

 w, h = SCREEN_SIZE

 clock = pygame.time.Clock()

 ant_image = pygame.image.load("ant.png").convert_alpha()
 leaf_image = pygame.image.load("leaf.png").convert_alpha()
 spider_image = pygame.image.load("spider.png").convert_alpha()

 # Add all our ant entities
 for ant_no in xrange(ANT_COUNT):

8725.book Page 162 Sunday, September 23, 2007 8:57 PM

C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R 163

 ant = Ant(world, ant_image)
 ant.location = Vector2(randint(0, w), randint(0, h))
 ant.brain.set_state("exploring")
 world.add_entity(ant)

 while True:

 for event in pygame.event.get():
 if event.type == QUIT:
 return

 time_passed = clock.tick(30)

 # Add a leaf entity 1 in 20 frames
 if randint(1, 10) == 1:
 leaf = Leaf(world, leaf_image)
 leaf.location = Vector2(randint(0, w), randint(0, h))
 world.add_entity(leaf)

 # Add a spider entity 1 in 100 frames
 if randint(1, 100) == 1:
 spider = Spider(world, spider_image)
 spider.location = Vector2(-50, randint(0, h))
 spider.destination = Vector2(w+50, randint(0, h))
 world.add_entity(spider)

 world.process(time_passed)
 world.render(screen)

 pygame.display.update()

if __name__ == "__main__":
 run()

Summary
Making a nonplayer character behave in a realistic fashion is the goal of artificial intelligence in
games. Good AI adds an extra dimension to the game because players will feel that they are in a
real world rather than a computer program. Poor AI can destroy the illusion of realism as easily
as glitches in the graphics or unrealistic sounds—possibly even more so. A player might be able
to believe that a crudely drawn stick figure is a real person, but only as long as it doesn’t bump
into walls!

The apparent intelligence of an NPC is not always related to the amount of code used to
simulate it. Players will tend to attribute intelligence to NPCs that is not really there. In the ant
simulation that we created for this chapter, the ants will form an orderly queue when chasing

8725.book Page 163 Sunday, September 23, 2007 8:57 PM

164 C H A P T E R 7 ■ T A K E M E T O Y O U R L E A D E R

the spider. A friend of mine saw this and remarked that they were cooperating in the hunt—but
of course the ants were acting completely independently. Sometimes it can take surprisingly
little work to convince the player that something is smart.

State machines are a practical and easy way of implementing game AI because they break
down a complex system (i.e., a brain) into smaller chunks that are easy to implement. They aren’t
difficult to design because we are accustomed to imagining what other people or animals are
thinking when they do things. It may not be practical to turn every thought into computer code,
but you only need to approximate behavior to simulate it in a game.

The simple state machine framework we created in this chapter can be used in your own
games to build convincing AI. As with the ant simulation, start out by defining what the actions
for your NPC are and then figure out what would make it switch between these actions. Once you
have this laid out on paper (as in Figure 7-3), you can start building the individual states in code.

The next chapter is a gentle introduction to rendering three-dimensional graphics with
Pygame.

8725.book Page 164 Sunday, September 23, 2007 8:57 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

